Übungsblatt 3

Abgabe von * Aufgaben am 11.11.2002 in der Übung.

Aufgabe 13*: (Trigonometrische Polynome. 10 Bonuspunkte)

Zeige, dass die (trigonometrischen) Fourier-Reihen von $\cos(x)^n$ und $\sin(x)^n$ für jedes $n \in \mathbb{N}$ aus endlich vielen Termen bestehen. Folgere, dass die Fourier-Reihen beliebiger Polynome in $\sin(x)$ und $\cos(x)$ aus endlich vielen Termen bestehen.

Anmerkung: probiere in MuPAD z.B. combine($cos(x) \land 3*sin(x) \land 5$, sincos) aus.

Musterlösung:

Die Fourier-Entwicklungen lassen sich ganz explizit hinschreiben:

$$\cos(x)^{n} = \left(\frac{e^{i \cdot x} + e^{-i \cdot x}}{2}\right)^{n} = \frac{1}{2^{n}} \cdot \sum_{k=0}^{n} \binom{n}{k} \cdot e^{i \cdot (n-k) \cdot x} \cdot e^{-i \cdot k \cdot x} = \frac{1}{2^{n}} \cdot \sum_{k=0}^{n} \binom{n}{k} \cdot e^{i \cdot (n-2 \cdot k) \cdot x},$$

$$\sin(x)^{n} = \left(\frac{e^{i \cdot x} - e^{-i \cdot x}}{2 \cdot i}\right)^{n} = \frac{1}{2^{n} \cdot i^{n}} \cdot \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^{k} \cdot e^{i \cdot (n-k) \cdot x} \cdot e^{-i \cdot k \cdot x}$$

$$= \frac{1}{2^{n} \cdot i^{n}} \cdot \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^{k} \cdot e^{i \cdot (n-2 \cdot k) \cdot x}.$$

Die Multiplikation solcher Summen liefert wieder Summen, die lediglich Potenzen von $e^{i \cdot x}$ und $e^{-i \cdot x}$ enthalten, welche sich wiederum mittels $e^{i \cdot k \cdot x}$ schreiben lassen. Damit lassen sich auch beliebige Polynome in $\sin(x)$ und $\cos(x)$ als endliche Summen über Terme der Form $e^{i \cdot k \cdot x}$ schreiben.

Aufgabe 14*: (Spektrale Verschiebung. 10 Bonuspunkte)

Seien $c_k(f)$ die (trigonometrischen) Fourier-Koeffizienten der Funktion f. Bestimme für $k_0 \in \mathbb{Z}$ die Fourier-Koeffizienten der Funktionen $e^{i \cdot k_0 \cdot x} \cdot f(x)$, $\cos(k_0 \cdot x) \cdot f(x)$ und $\sin(k_0 \cdot x) \cdot f(x)$ in Termen von $c_k(f)$.

Musterlösung:

$$c_{k}(e^{i \cdot k_{0} \cdot x} \cdot f) = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} e^{-i \cdot k \cdot x} \cdot e^{i \cdot k_{0} \cdot x} \cdot f(x) \, dx = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} e^{-i \cdot (k - k_{0}) \cdot x} \cdot f(x) \, dx = c_{k - k_{0}}(f),$$

$$c_{k}(\cos(k_{0} \cdot x) \cdot f) = \frac{1}{2} \cdot \left(c_{k}(e^{i \cdot k_{0} \cdot x} \cdot f) + c_{k}(e^{-i \cdot k_{0} \cdot x} \cdot f) \right) = \frac{c_{k - k_{0}}(f) + c_{k + k_{0}}(f)}{2},$$

$$c_{k}(\sin(k_{0} \cdot x) \cdot f) = \frac{1}{2 \cdot i} \cdot \left(c_{k}(e^{i \cdot k_{0} \cdot x} \cdot f) - c_{k}(e^{-i \cdot k_{0} \cdot x} \cdot f) \right) = \frac{c_{k - k_{0}}(f) - c_{k + k_{0}}(f)}{2 \cdot i}.$$

Aufgabe 15*: (Faltungen. 10 Bonuspunkte)

Seien $c_k(f)$ und $c_k(g)$ die (trigonometrischen) Fourier-Koeffizienten zweier $2 \cdot \pi$ -periodischer Funktionen f und g. Die "Faltung" f * g von f und g ist die Funktion

$$(f * g)(x) = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} f(x - y) \cdot g(y) \ dy.$$

- a) Zeige f * g = g * f.
- b) Bestimme die Fourier-Koeffizienten $c_k(f*g)$ in Termen von $c_k(f)$ und $c_k(g)$.

Musterlösung:

a) Substitution $y \to z = x - y$:

$$(f * g)(x) = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} f(x - y) \cdot g(y) \, dy = -\frac{1}{2 \cdot \pi} \cdot \int_{z + \pi}^{z - \pi} f(z) \cdot g(x - z) \, dz$$
$$= \frac{1}{2 \cdot \pi} \cdot \int_{z - \pi}^{z + \pi} f(z) \cdot g(x - z) \, dz \stackrel{(*)}{=} \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} f(z) \cdot g(x - z) \, dz = (g * f)(x).$$

Im Schritt (*) wurde die $2 \cdot \pi$ -Periodizität des Integranden verwendet.

b)

$$c_k(f * g) = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} (f * g)(x) \cdot e^{-i \cdot k \cdot x} \, dx = \frac{1}{(2 \cdot \pi)^2} \cdot \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} f(x - y) \cdot g(y) \, dy \right) \cdot e^{-i \cdot k \cdot x} \, dx$$

$$= \frac{1}{(2 \cdot \pi)^2} \cdot \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x - y) \cdot g(y) \cdot e^{-i \cdot k \cdot x} \, dy \, dx = \frac{1}{(2 \cdot \pi)^2} \cdot \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} f(x - y) \cdot e^{-i \cdot k \cdot x} \, dx \right) \cdot g(y) \, dy.$$

Substitution $x \to z = x - y$ liefert

$$\int_{-\pi}^{\pi} f(x-y) \cdot e^{-i \cdot k \cdot x} dx = \int_{-\pi-y}^{\pi-y} f(z) \cdot e^{-i \cdot k \cdot (z+y)} dx$$
$$= \int_{\pi-y}^{\pi-y} f(z) \cdot e^{-i \cdot k \cdot z} dx \cdot e^{-i \cdot k \cdot y} = \int_{-\pi}^{\pi} f(z) \cdot e^{-i \cdot k \cdot z} dx \cdot e^{-i \cdot k \cdot y}.$$

Das ergibt:

$$c_k(f * g) = \frac{1}{(2 \cdot \pi)^2} \cdot \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} f(z) \cdot e^{-i \cdot k \cdot z} dx \cdot e^{-i \cdot k \cdot y} \right) \cdot g(y) dy$$
$$= \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} c_k(f) \cdot e^{-i \cdot k \cdot y} \cdot g(y) dy = c_k(f) \cdot c_k(g).$$

Aufgabe 16*: (Fourier–Koeffizienten bestimmen die Funktion eindeutig. 10 Bonuspunkte) (Für mathematisch Interessierte) Zeige, dass eine <u>stetige</u> Funktion identisch 0 sein muss, wenn alle ihre Fourier–Koeffizienten bzgl. der trigonometrischen Funktionen verschwinden.

Anleitung: Sei f eine (o.B.d.A. reellwertige) stetige Funktion. Angenommen, es gibt einen Punkt x_0 mit $|f(x_0)| \neq 0$ (o.B.d.A. $x_0 = 0$ und $f(x_0) > 0$). Wähle $\delta > 0$ so, dass $f(x) \geq f(0)/2$ gilt für alle $x \in [-\delta, \delta]$ (so ein δ existiert wegen der Stetigkeit von f). Sei o.B.d.A. $0 < \delta < \pi$. Setze $p(x) = 1 + \cos(x) - \cos(\delta)$. Sei $U_{\delta} = [-\delta, \delta]$, sei $C = [-\pi, \pi] \setminus U_{\delta}$. Die entscheidende Tatsache ist, dass $p(x) \geq 1$ gilt für alle $x \in U_{\delta}$ und $|p(x)| \leq 1$ für alle $x \in C$. Zeige:

$$\left| \int_{-\pi}^{\pi} f(x) \cdot p(x)^{n} dx \right| \ge \int_{U_{\delta}} f(x) \cdot p(x)^{n} dx - \int_{C} |f(x)| \cdot |p(x)|^{n} dx$$

$$\ge \frac{f(0)}{2} \cdot \int_{U_{\delta}} p(x)^{n} dx - \int_{C} |f(x)| dx$$

$$\ge \frac{f(0)}{2} \cdot \int_{U_{\frac{\delta}{2}}} p(x)^{n} dx - \int_{C} |f(x)| dx.$$

Was ist der Grenzwert der rechten Seite für $n \to \infty$? Andererseits muss $\int_{-\pi}^{\pi} f(x) \cdot p(x)^n dx = 0$ gelten für alle n (warum? Beachte Aufgabe 13). Widerspruch zur Existenz eines Punktes x_0 mit $f(x_0) > 0$!

Musterlösung:

Beachte, dass der Integrand $f(x) \cdot p(x)^n$ auf U_δ positiv ist:

$$\left| \int_{-\pi}^{\pi} f(x) \cdot p(x)^{n} dx \right| = \left| \int_{U_{\delta}} f(x) \cdot p(x)^{n} dx + \int_{C} f(x) \cdot p(x)^{n} dx \right|$$

$$\geq \int_{U_{\delta}} f(x) \cdot p(x)^{n} dx - \left| \int_{C} f(x) \cdot p(x)^{n} dx \right|$$

$$\geq \frac{f(0)}{2} \cdot \int_{U_{\delta}} p(x)^{n} dx - \int_{C} |f(x)| \cdot |p(x)|^{n} dx$$

$$= \frac{f(0)}{2} \cdot \int_{U_{\frac{\delta}{2}}} p(x)^{n} dx + \frac{f(0)}{2} \cdot \int_{U_{\delta} \setminus U_{\frac{\delta}{2}}} p(x)^{n} dx - \int_{C} |f(x)| dx$$

$$\geq \frac{f(0)}{2} \cdot \int_{U_{\frac{\delta}{2}}} p(x)^{n} dx - \int_{C} |f(x)| dx.$$

Für alle $x \in U_{\frac{\delta}{2}}$ gilt (cos ist auf $U_{\frac{\delta}{2}}$ monoton fallend):

$$p(x) = 1 + \cos(x) - \cos(\delta) \ge 1 + \cos\left(\frac{\delta}{2}\right) - \cos(\delta) =: p^* > 1.$$

Es folgt

$$\left| \int_{-\pi}^{\pi} f(x) \cdot p(x)^{n} dx \right| \ge \frac{f(0)}{2} \cdot \int_{U_{\frac{\delta}{2}}} p(x)^{n} dx - \int_{C} |f(x)| dx$$

$$\ge \frac{f(0)}{2} \cdot \int_{U_{\frac{\delta}{2}}} p^{*n} dx - \int_{C} |f(x)| dx$$

$$= \frac{f(0)}{2} \cdot \delta \cdot p^{*n} - \int_{C} |f(x)| dx.$$

Wegen $p^* > 1$ konvergiert dieser Wert für $n \to \infty$ gegen ∞ . Andererseits ist $p(x)^n$ ein Polynom in $\sin(x)$ und $\cos(x)$ und läßt sich nach Aufgabe 13 als endliche Summe von Termen der Form $e^{i \cdot k \cdot x}$ schreiben. Damit liefert

$$\frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} f(x) \cdot p(x)^n \ dx$$

eine Summe von Termen, in denen die Fourier-Koeffizienten

$$\frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} f(x) \cdot e^{i \cdot k \cdot x} \ dx$$

auftauchen, die nach Voraussetzung aber alle verschwinden sollen. Damit muss $\int_{-\pi}^{\pi} f(x) \cdot p(x)^x dx = 0$ gelten. Widerspruch!

Aufgabe 17: (MuPAD. 0 Bonuspunkte)

a) Man beschäftige sich mit dem Punkt "Programmieren" unter

http://www.mupad.de/schule/mupad-lernen/grundkurs/index.html

b) Ermittle mittels einer for-Schleife numerische Approximation der ersten 40 Fourier-Koeffizienten a_k der Funktion $f(x) = x/(1+x^2)$, $x \in [-\pi,\pi]$. Definiere die Fourier-Approximation $S(n,x) = \sum_{k=1}^n a_k \cdot \sin(x)$ als MuPAD-Funktion und plotte f(x), S(3,x), S(10,x), S(40,x) mit einer hinreichend grossen Auflösung in einer gemeinsamen Graphik. MuPAD-Funktionen: numeric::int, _plus.

Musterlösung: