Übungen zur Vorlesung

Lineare Algebra I

WS 2003/2004 Blatt 9

AUFGABE 1 (4 Punkte):

a) Weisen Sie nach, dass die 2×2 -Matrizen bezüglich der folgenden Addition

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$

und skalaren Multiplikation

$$\alpha \cdot \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) = \left(\begin{array}{cc} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{array} \right)$$

einen \mathbb{R} -Vektorraum $M_2(\mathbb{R})$ bilden.

b) Geben Sie eine Basis von $M_2(\mathbb{R})$ an.

AUFGABE 2 (4 Punkte):

Seien v_1, \ldots, v_n linear unabhängige Vektoren. Für $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ setzen wir

$$w = \alpha_1 v_1 + \cdots + \alpha_n v_n$$
.

Beweisen Sie, dass das System der Vektoren v_1-w,\ldots,v_n-w genau dann linear abhängig ist, wenn $\alpha_1+\alpha_2+\cdots+\alpha_n=1$ gilt.

AUFGABE 3 (4 Punkte):

Wir betrachten zwei Teilmengen des \mathbb{R}^4 , nämlich

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mid x_2 - 2x_3 + x_4 = 0 \right\} \text{ und } W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mid x_1 = 0, x_2 = 2x_3 \right\}$$

Bestimmen Sie eine Basis für $V \cap W$.

AUFGABE 4 (4 Punkte):

a) Sei v_1, \ldots, v_n eine Basis des Vektorraumes V_1 . Wir betrachten für ein $r \in \{1, \ldots, n\}$ den Unterraum $U = \langle v_1, \ldots, v_r \rangle$ von V_1 . Beweisen Sie, dass es einen Unterraum W von V_1 gibt, so dass

$$U \cap W = \{0\}$$
 und $U + W = V_1$ gilt.

b) Seien U_1,U_2 Unterräume eines Vektorraumes V_2 . Weisen Sie nach, dass $U_1\cup U_2$ genau dann ein Unterraum von V_2 ist, wenn $U_1\subset U_2$ oder $U_2\subset U_1$ gilt.

 $\bf Abgabeort:$ In den orangen mit den Nummern 10 oder 15 versehenden Kästen auf dem D1-Flur.