Übungen zur Vorlesung

Lineare Algebra I

WS 2003/2004

Musterlösung zu Blatt 7

AUFGABE 1 (4 Punkte):

Gegeben seien die vier Vektoren

$$\mathfrak{a}_1 = \begin{pmatrix} 0 \\ 9 \\ 3 \\ 12 \end{pmatrix}, \, \mathfrak{a}_2 = \begin{pmatrix} -3 \\ 6 \\ 1 \\ 10 \end{pmatrix}, \, \mathfrak{a}_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} \text{ und } \mathfrak{a}_4 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

Zeigen Sie, dass jede Linearkombination von \mathfrak{a}_1 und \mathfrak{a}_2 auch eine von \mathfrak{a}_3 und \mathfrak{a}_4 ist und umgekehrt.

Lösung: Wir müssen zeigen, dass sich der Vektor

$$\mathfrak{x} = \lambda_1 \mathfrak{a}_1 + \lambda_2 \mathfrak{a}_2, \ \lambda_1, \lambda_2 \in \mathbb{R}$$

auch als

$$\mathfrak{x} = \mu_1 \mathfrak{a}_3 + \mu_2 \mathfrak{a}_4, \, \mu_1, \mu_2 \in \mathbb{R}$$

darstellen lässt und umgekehrt. Dazu betrachten wir das folgende Gleichungssystem und behandeln dieses mit dem Gauss-Algorithmus.

- > with(linalg):
- > M:=matrix(4,4,[0,-3,1,2,9,6,2,1,3,1,1,1,12,10,2,0]);

$$M := \begin{bmatrix} 0 & -3 & 1 & 2 \\ 9 & 6 & 2 & 1 \\ 3 & 1 & 1 & 1 \\ 12 & 10 & 2 & 0 \end{bmatrix}$$

> M1:=swaprow(M,1,3);

$$M1 := \begin{bmatrix} 3 & 1 & 1 & 1 \\ 9 & 6 & 2 & 1 \\ 0 & -3 & 1 & 2 \\ 12 & 10 & 2 & 0 \end{bmatrix}$$

> M2:=mulrow(M1,1,1/3);

$$M2 := \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 9 & 6 & 2 & 1 \\ 0 & -3 & 1 & 2 \\ 12 & 10 & 2 & 0 \end{bmatrix}$$

> M3:=addrow(M2,1,2,-9);

$$M3 := \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 3 & -1 & -2 \\ 0 & -3 & 1 & 2 \\ 12 & 10 & 2 & 0 \end{bmatrix}$$

> M4:=addrow(M3,1,4,-12);

$$M4 := \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 3 & -1 & -2 \\ 0 & -3 & 1 & 2 \\ 0 & 6 & -2 & -4 \end{bmatrix}$$

> M5:=mulrow(M4,2,1/3);

$$M5 := \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & \frac{-1}{3} & \frac{-2}{3} \\ 0 & -3 & 1 & 2 \\ 0 & 6 & -2 & -4 \end{bmatrix}$$

> M6:=addrow(M5,2,1,-1/3);

$$M6 := \begin{bmatrix} 1 & 0 & \frac{4}{9} & \frac{5}{9} \\ 0 & 1 & \frac{-1}{3} & \frac{-2}{3} \\ 0 & -3 & 1 & 2 \\ 0 & 6 & -2 & -4 \end{bmatrix}$$

> M7:=addrow(M6,2,3,3);

$$M7 := \begin{bmatrix} 1 & 0 & \frac{4}{9} & \frac{5}{9} \\ 0 & 1 & \frac{-1}{3} & \frac{-2}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 6 & -2 & -4 \end{bmatrix}$$

> M8:=addrow(M7,2,4,-6);

$$M8 := \begin{bmatrix} 1 & 0 & \frac{4}{9} & \frac{5}{9} \\ 0 & 1 & \frac{-1}{3} & \frac{-2}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Aus dieser Matrix entnehmen wir, dass $\mathfrak{a}_3 = \frac{4}{9}\mathfrak{a}_1 - \frac{1}{3}\mathfrak{a}_2$ sowie $\mathfrak{a}_4 = \frac{5}{9}\mathfrak{a}_1 - \frac{2}{3}\mathfrak{a}_2$ gilt. Nehmen wir nun $\mathfrak{x} = \mu_1\mathfrak{a}_3 + \mu_2\mathfrak{a}_4$ an, so können wir $\mathfrak{x} = \mu_1(\frac{4}{9}\mathfrak{a}_1 - \frac{1}{3}\mathfrak{a}_2) + \mu_2(\frac{5}{9}\mathfrak{a}_1 - \frac{2}{3}\mathfrak{a}_2)$ bzw. $\mathfrak{x} = (\frac{4}{9}\mu_1 + \frac{5}{9}\mu_2)\mathfrak{a}_1 + (-\frac{1}{3}\mu_1 - \frac{2}{3}\mu_2)\mathfrak{a}_2$ schreiben. Zu gegeben μ_1 und μ_2 finden wir also $\lambda_1 = \frac{4}{9}\mu_1 + \frac{5}{9}\mu_2$ und $\lambda_2 = -\frac{1}{3}\mu_1 - \frac{2}{3}\mu_2$, so dass \mathfrak{x} auch eine Linearkombination der Vektoren \mathfrak{a}_1 und \mathfrak{a}_2 ist.

Für die Umkehrung betrachten wir folgendes lineare Gleichungssystem. Dieses resultiert aus den Gleichungen

$$\mathfrak{a}_3 = \frac{4}{9}\mathfrak{a}_1 - \frac{1}{3}\mathfrak{a}_2 \text{ und } \mathfrak{a}_4 = \frac{5}{9}\mathfrak{a}_1 - \frac{2}{3}\mathfrak{a}_2.$$

> N:=matrix(2,3,[4/9,-1/3,a3, 5/9,-2/3,a4]);

$$N := \begin{bmatrix} \frac{4}{9} & \frac{-1}{3} & a3\\ \frac{5}{9} & \frac{-2}{3} & a4 \end{bmatrix}$$

> N1:=mulrow(N,1,9/4);

$$N1 := \begin{bmatrix} 1 & \frac{-3}{4} & \frac{9a3}{4} \\ \frac{5}{9} & \frac{-2}{3} & a4 \end{bmatrix}$$

> N2:=addrow(N1,1,2,-5/9);

$$N2 := \begin{bmatrix} 1 & \frac{-3}{4} & \frac{9 \, a3}{4} \\ 0 & \frac{-1}{4} & -\frac{5 \, a3}{4} + a4 \end{bmatrix}$$

> N3:=mulrow(N2,2,-4);

$$N3 := \begin{bmatrix} 1 & \frac{-3}{4} & \frac{9 \, a3}{4} \\ 0 & 1 & 5 \, a3 - 4 \, a4 \end{bmatrix}$$

> N4:=addrow(N3,2,1,3/4);

$$N4 := \left[\begin{array}{ccc} 1 & 0 & 6 \, a3 - 3 \, a4 \\ 0 & 1 & 5 \, a3 - 4 \, a4 \end{array} \right]$$

Das Gleichungssystem N4 lässt uns $\mathfrak{a}_1 = 6\mathfrak{a}_3 - 3\mathfrak{a}_4$ sowie $\mathfrak{a}_2 = 5\mathfrak{a}_3 - 4\mathfrak{a}_4$ erkennen. Wenn nun eine Linearkombination $\mathfrak{x} = \lambda_1\mathfrak{a}_1 + \lambda_2\mathfrak{a}_2$ vorliegt, so lässt sich diese auch durch $\mathfrak{x} = \lambda_1(6\mathfrak{a}_3 - 3\mathfrak{a}_4) + \lambda_2(5\mathfrak{a}_3 - 4\mathfrak{a}_4)$ bzw. $\mathfrak{x} = (6\lambda_1 + 5\lambda_2)\mathfrak{a}_3 + (-3\lambda_1 - 4\lambda_2)\mathfrak{a}_4$ ausdrücken.

Insgesamt wurde damit gezeigt, dass die Linearkombinationen von \mathfrak{a}_1 und \mathfrak{a}_2 mit den Linearkombinationen von \mathfrak{a}_3 und \mathfrak{a}_4 übereinstimmen.

AUFGABE 2 (4 Punkte):

Gegeben sei die Koeffizienten-Matrix

$$A = \begin{pmatrix} 2 & 1 & 8 & -1 & 16 \\ 1 & 1 & 5 & 1 & 7 \\ -1 & 0 & -3 & 3 & -11 \\ 1 & -1 & 1 & 1 & -1 \end{pmatrix}.$$

Berechnen Sie zuerst die Zeilenstufenform von A und geben anschließend deren Rang an.

Lösung:

> A:=matrix(4,5,[2,1,8,-1,16, 1,1,5,1,7, -1,0,-3,3,-11, 1,-1,1,1,-1]);

$$A := \begin{bmatrix} 2 & 1 & 8 & -1 & 16 \\ 1 & 1 & 5 & 1 & 7 \\ -1 & 0 & -3 & 3 & -11 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix}$$

Vertauschen der ersten und zeiten Zeile von A

$$A1 := \begin{bmatrix} 1 & 1 & 5 & 1 & 7 \\ 2 & 1 & 8 & -1 & 16 \\ -1 & 0 & -3 & 3 & -11 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix}$$

Addition des -2-fachen der ersten Zeile zur zweiten Zeile

$$A2 := \begin{bmatrix} 1 & 1 & 5 & 1 & 7 \\ 0 & -1 & -2 & -3 & 2 \\ -1 & 0 & -3 & 3 & -11 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix}$$

$$A3 := \begin{bmatrix} 1 & 1 & 5 & 1 & 7 \\ 0 & -1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 4 & -4 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix}$$

$$A4 := \begin{vmatrix} 1 & 1 & 5 & 1 & 7 \\ 0 & -1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 4 & -4 \\ 0 & -2 & -4 & 0 & -8 \end{vmatrix}$$

Multiplkation der zweiten Zeile mit -1

$$>$$
 A5 := mulrow(A4,2,-1);

$$A5 := \begin{vmatrix} 1 & 1 & 5 & 1 & 7 \\ 0 & 1 & 2 & 3 & -2 \\ 0 & 1 & 2 & 4 & -4 \\ 0 & -2 & -4 & 0 & -8 \end{vmatrix}$$

$$A6 := \begin{vmatrix} 1 & 0 & 3 & -2 & 9 \\ 0 & 1 & 2 & 3 & -2 \\ 0 & 1 & 2 & 4 & -4 \\ 0 & -2 & -4 & 0 & -8 \end{vmatrix}$$

$$>$$
 A7 := addrow(A6,2,3,-1);

$$A7 := \begin{bmatrix} 1 & 0 & 3 & -2 & 9 \\ 0 & 1 & 2 & 3 & -2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & -2 & -4 & 0 & -8 \end{bmatrix}$$

> A8 := addrow(A7,2,4,2);

$$A8 := \begin{vmatrix} 1 & 0 & 3 & -2 & 9 \\ 0 & 1 & 2 & 3 & -2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 6 & -12 \end{vmatrix}$$

> A9 := addrow(A8,3,2,-3);

$$A9 := \begin{bmatrix} 1 & 0 & 3 & -2 & 9 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 6 & -12 \end{bmatrix}$$

> A10 := addrow(A9,3,1,2);

$$A10 := \begin{vmatrix} 1 & 0 & 3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 6 & -12 \end{vmatrix}$$

> A11 := addrow(A10,3,4,-6);

$$A11 := \begin{bmatrix} 1 & 0 & 3 & 0 & 5 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Die Matrix A11 ist in Zeilenstufenform. Ihr Rang ist 3.

AUFGABE 3 (4 Punkte):

Gegeben seien die Vektoren
$$\mathfrak{b}_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
, $\mathfrak{b}_2 = \begin{pmatrix} 4+\lambda \\ 2\lambda \\ 2+\lambda \end{pmatrix}$ und $\mathfrak{b}_3 = \begin{pmatrix} -1 \\ \lambda-3 \\ \lambda+1 \end{pmatrix}$.

- a) Für welche $\lambda \in \mathbb{R}$ bilden \mathfrak{b}_1 , \mathfrak{b}_2 , \mathfrak{b}_3 eine Basis? Geben Sie eine hinreichende und notwendige Bedingung an!
- b) Geben Sie für $\lambda = -1$ und $\lambda = 1$ die Basen an und stellen Sie den Vektor $\mathfrak{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ als Linearkombination der beiden Basen dar.

Lösung:

Teil a)

Wir betrachten die Linearkombinationaufgabe $s_1\mathfrak{b}_1 + s_2\mathfrak{b}_2 + s_3\mathfrak{b}_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ mit $s_1, s_2, s_3 \in \mathbb{R}$.

Diese lässt sich in ein lineares Gleichungssystem umformen und zwar auf:

> B:=matrix(3,4,[2,4+lambda,-1,x, 0,2*lambda,lambda-3,y, 1,2+lambda,lambda+1,z]);

$$B := \begin{bmatrix} 2 & 4+\lambda & -1 & x \\ 0 & 2\lambda & \lambda-3 & y \\ 1 & 2+\lambda & \lambda+1 & z \end{bmatrix}$$

> B1:=swaprow(B,1,3);

$$B1 := \begin{bmatrix} 1 & 2+\lambda & \lambda+1 & z \\ 0 & 2\lambda & \lambda-3 & y \\ 2 & 4+\lambda & -1 & x \end{bmatrix}$$

> B2:=addrow(B1,1,3,-2);

$$B2 := \begin{bmatrix} 1 & 2+\lambda & \lambda+1 & z \\ 0 & 2\lambda & \lambda-3 & y \\ 0 & -\lambda & -2\lambda-3 & -2z+x \end{bmatrix}$$

> B3:=addrow(B2,2,3,1/2);

$$B3 := \begin{bmatrix} 1 & 2+\lambda & \lambda+1 & z \\ 0 & 2\lambda & \lambda-3 & y \\ 0 & 0 & -\frac{3\lambda}{2} - \frac{9}{2} & \frac{y}{2} - 2z + x \end{bmatrix}$$

Falls $\lambda = 0$ gilt, so ist die zweite Spalte von B ein Vielfaches der ersten Spalte. Damit sind die zugehörigen Vektoren linear abhängig, so dass $\mathfrak{b}_1, \mathfrak{b}_2$ und \mathfrak{b}_3 keine Basis bilden können. Ferner lässt sich an der Matrix B3 erkennen, dass für $\lambda = -3$, kein Erzeugendensystem vor-

liegt. Der Vektor $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ lässt sich in diesem Fall aufgrund der Unerfüllbarkeit der letzten

Gleichung $(0 \neq 1)$ nicht darstellen. Dieses zeigt uns, dass $\mathfrak{b}_1, \mathfrak{b}_2$ und \mathfrak{b}_3 kein Erzeugendensystem bilden.

Sei nun $\mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}_3$ eine Basis des Anschauungsraumes, so sind diese drei Vektoren erstens linear unabhängig und bilden zweitens ein Erzeugendensystem. Nach dem eben Gezeigten folgt dann, dass λ eine von 0 und -3 verschiedene reelle Zahl sein muss.

Ist umgekehrt λ eine von 0 und -3 verschiedene reelle Zahl, so ist der Koeffizient s_3 nach der dritten Zeile von B3 eindeutig bestimmt. Daraus lässt sich dann auch eindeutig ein s_2 berechnen und schließlich auch ein s_1 .

Die Vektoren $\mathfrak{b}_1, \mathfrak{b}_2$ und \mathfrak{b}_3 bilden also ein Erzeugendensystem des Anschauungsraumes. Setzen wir in der Matrix B3 die Variablen x, y und z alle auf 0, so erhalten wir zunächst $s_3 = 0$, dann $s_2 = 0$ und schließlich $s_1 = 0$. Dieses liefert uns die lineare Unabhängigkeit des Vektorsystemes $\mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}_3$.

Fassen wir zusammen, so gilt: Die Vektoren $\mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}_3$ bilden genau dann eine Basis des Anschauungsraumes, wenn λ eine von 0 und -3 verschiedene reelle Zahl ist.

Teil b)

1. Fall $(\lambda = -1)$: Hier erhalten wir folgende Matrix [Wir setzen in der Matrix B3 $\lambda = -1$] > C:=matrix(3,4,[1,1,0,1, 0,-2,-4,0, 0,0,-3,-1]);

$$C := \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & -2 & -4 & 0 \\ 0 & 0 & -3 & -1 \end{array} \right]$$

Weitere Umformungen führen zu:

> C1:=mulrow(C,2,-1/2);

$$C1 := \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -1 \end{bmatrix}$$

> C2:=addrow(C1,2,1,-1);

$$C2 := \left[\begin{array}{cccc} 1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -1 \end{array} \right]$$

$$C3 := \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix}$$

$$C4 := \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 0 & \frac{-2}{3} \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix}$$

> C5:=addrow(C4,3,1,2);

$$C5 := \begin{bmatrix} 1 & 0 & 0 & \frac{5}{3} \\ 0 & 1 & 0 & \frac{-2}{3} \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix}$$

$$s3 := \frac{1}{3}$$

$$s2 := \frac{-2}{3}$$

$$> s1:=5/3;$$

$$s1 := \frac{5}{3}$$

Damit gilt also $s_1\mathfrak{b}_1 + s_2\mathfrak{b}_2 + s_3\mathfrak{b}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

2. Fall ($\lambda = 1$): Hier erhalten wir folgende Matrix [Wir setzen in der Matrix B3 $\lambda = 1$] > E:=matrix(3,4,[1,3,2,1, 0,2,-2,0, 0,0,-6,-1]);

$$E := \left[\begin{array}{cccc} 1 & 3 & 2 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & -6 & -1 \end{array} \right]$$

$$E1 := \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -6 & -1 \end{bmatrix}$$

> E2:=mulrow(E1,3,-1/6);

$$E2 := \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & \frac{1}{6} \end{bmatrix}$$

> E3:=addrow(E2,2,1,-3);

$$E3 := \begin{bmatrix} 1 & 0 & 5 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & \frac{1}{6} \end{bmatrix}$$

> E4:=addrow(E3,3,2,1);

$$E4 := \left| \begin{array}{cccc} 1 & 0 & 5 & 1 \\ 0 & 1 & 0 & \frac{1}{6} \\ 0 & 0 & 1 & \frac{1}{6} \end{array} \right|$$

> E5:=addrow(E4,3,1,-5);

$$E5 := \left[\begin{array}{cccc} 1 & 0 & 0 & \frac{1}{6} \\ 0 & 1 & 0 & \frac{1}{6} \\ 0 & 0 & 1 & \frac{1}{6} \end{array} \right]$$

> s3:= 1/6;

$$s3 := \frac{1}{6}$$

> s2:=1/6;

$$s2 := \frac{1}{6}$$

> s1:= 1/6;

$$s1 := \frac{1}{6}$$

Damit gilt also
$$s_1\mathfrak{b}_1 + s_2\mathfrak{b}_2 + s_3\mathfrak{b}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

AUFGABE 4 (4 Punkte):

Gegeben sei ein Gleichungssystem durch seine erweiterte Koeffizientenmatrix $[A \mid \mathfrak{b}]$. Geben Sie eine notwendige und hinreichende Bedingung an, so dass die Lösungsmenge einen Unterraum des \mathbb{R}^n bildet.

Lösung:

Behauptung: Die Lösungsmenge von $[A, \mathfrak{b}]$ bildet genau dann einen Unterraum des \mathbb{R}^n , wenn $\mathfrak{b} = \mathfrak{o}$ gilt.

Beweis: " \Leftarrow ": Wenn $\mathfrak{b} = \mathfrak{o}$ ist, so bildet nach Satz 2.1 Teil (b) die Lösungsmenge einen Unterraum des \mathbb{R}^n .

" \Rightarrow ": Ist die Lösungmenge von $[A, \mathfrak{b}]$ ein Unterraum des \mathbb{R}^n , so ist diese nicht leer. Wir finden also eine Lösung \mathfrak{x} . Wegen der Unterraumeigenschaft (siehe Satz 2.1. Teil (b)) ist dann aber auch $r\mathfrak{x}$ für ein beliebiges $r \in \mathbb{R}$ eine Lösung von $[A, \mathfrak{b}]$. Insbesondere ist dann für r = 0 der Vektor \mathfrak{o} eine Lösung von $[A, \mathfrak{b}]$. Setzen wir diese Lösung in die m Gleichungen mit n Variablen ein, so bekommen wir für $i = 1, \ldots, m$ die Gleichungen

$$0 = a_{i,1} \cdot 0 + a_{i,2} \cdot 0 + \dots + a_{i,n} \cdot 0 = b_i$$

Hieraus lesen wir ohne Mühe $\mathfrak{b} = \mathfrak{o}$ ab.