(3.4) DEF: Mengenoperationen

M und N seien beliebige Mengen.

a) Die Vereinigungsmenge von M und N ist definiert durch

$$M \cup N := \{ x \mid x \in M \lor x \in N \}$$

b) Die Durchschnittsmenge von M und N ist definiert durch

$$M \cap N := \{ x \mid x \in M \land x \in N \}$$

c) Die **Differenzsmenge** von M und N ist definiert durch

$$M \setminus N := \{ x \mid x \in M \land x \notin N \}$$

d) Im Falle $U \subseteq M$ heißt $C_M(U) := M \setminus U$ die Komplementmenge von U bzgl. M.

(3.5) SATZ: Mengenalgebra

M, N und P seien beliebige Mengen. Dann gelten die folgenden Regeln:

- a) $M \subseteq M \cup N$, $N \subseteq M \cup N$, $M \cap N \subseteq M$, $M \cap N \subseteq N$
- **b)** $M \cup N = N \cup M$, $M \cap N = N \cap M$
- c) $(M \cup N) \cup P = M \cup (N \cup P)$, $(M \cap N) \cap P = M \cap (N \cap P)$
- d) $M \cup (N \cap P) = (M \cup N) \cap (M \cup P)$ $M \cap (N \cup P) = (M \cap N) \cup (M \cap P)$
- e) $M \cup \emptyset = M$, $M \cap \emptyset = \emptyset$
- f) $M \setminus \emptyset = M$, $\emptyset \setminus M = \emptyset$
- g) $M \setminus (N \cup P) = (M \setminus N) \cap (M \setminus P)$ $M \setminus (N \cap P) = (M \setminus N) \cup (M \setminus P).$

Die Beweise werden in erster Linie mit Hilfe der logischen Formeln aus (2.4) und (2.5) geführt.

(3.6) **DEF**: Die **Potenzmenge** einer Menge M ist die Menge aller Teilmengen von M. Sie wird mit $\mathcal{P}(M)$ bezeichnet.

Es gilt immer: $\emptyset \in \mathcal{P}(M)$ und $M \in \mathcal{P}(M)$