MATHEMATIK FÜR INFORMATIKER I (WS 2000/01)

Abgabe: Montag, 5.2.2001 bis 13.00 Uhr !!!

Internet-Adresse der Vorlesung:

http://math-www.uni-paderborn.de/~chris/index9.html

- **47.** Aufgabe: Sei $M = \{1, 2, 3, 4, 5, 6\}$.
- a) Stelle für die Relation \leq auf M die Adjazenzmatrix auf.
- Für welche Relation R auf M hat die Adjazenzmatrix das nebenstehende Aussehen

$$A_{R} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$
 (2)

- **48.** Aufgabe: Sei R eine Relation auf der Menge $M = \{1, 2, ..., n\}$ $(n \in \mathbb{N})$ und $A_R = (a_{ik}) \in M_n(\mathbb{R})$ die zugehörige Adjazenzmatrix. Beweise:
- a) R reflexiv $\iff a_{ii} = 1 \ \forall i \in M$
- b) R symmetrisch \iff A_R ist eine symmetrische Matrix
- c) R transitiv $\iff a_{ik} \cdot a_{kl} \leq a_{il} \ \forall i, k, l \in M$
- d) $A_{R^{-1}} = {}^{t}A_{R}$ (Hierbei bezeichnet R^{-1} die zu R inverse Relation). (5)

49. Aufgabe: Seien
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -3 \\ -5 & 5 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 \\ -3 & 3 & -3 \\ -5 & 5 & -5 \end{pmatrix} \in M_3(\mathbb{R})$.

- a) Berechne die Matrizenprodukte $A \cdot B$, $A \cdot A$, $E_{12} \cdot A$, $A \cdot E_{32}$ (Hierbei ist E_{ik} eine Basismatrix)
- b) Untersuche, ob A oder B invertierbar sind (Hinweis: Versuche **nicht**, ein Inverses zu berechnen, sondern arbeite mit den Ergebnissen aus a)!).
- c) Berechne A^n für alle $n \in \mathbb{N}_0$ (Hinweis: hier sollte man an einen Induktionsbeweis denken!) (5)
- **50.** Aufgabe: Sei $\mathcal{C}:=\left\{\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) \mid a,b\in\mathbb{R} \right\} \subseteq \mathrm{M}_2(\mathbb{R})$. Beweise:
- a) \mathcal{C} ist abgeschlossen bzgl. der Matrizenaddition und -multiplikation, und die zweireihige Nullmatrix (O) und die zweireihige Einheitsmatrix (E) gehören zu \mathcal{C} .
- **b)** Die Matrix $A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \in \mathcal{C}$ ist invertierbar, und das Inverse von A ist ein Element von \mathcal{C} . (Zusatzfrage (ohne Wertung): Welche Matrizen aus \mathcal{C} sind überhaupt invertierbar?)
- c) Es gibt eine Matrix $I \in \mathcal{C}$ mit der Eigenschaft $I^2 + E = O$. (4)