Kap.I: Grundlegende Begriffe

§ 1. Abbildungen

Wir beginnen mit der Klärung des Abbildungsbegriffes.

(1.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen: $f:M\longrightarrow N$) ordnet jedem Element aus M genau ein Element aus N zu.

Bezeichnungen: Ist $f: M \longrightarrow N$ eine Abbildung, so heißt M der Definitionsbereich von f und N der Wertebereich von f.

Wird dem Element $x \in M$ durch f das Element y aus N zugeordnet, so nennt man y den Bildwert von x unter f und schreibt y = f(x) oder $x \longmapsto y$.

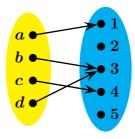
Ist y ein Element aus N, so heißt jedes Element $x \in M$ mit y = f(x) ein Urbild von y unter f.

Achtung: Eindeutige Zuordnung bedeutet, dass einem Element aus M nicht zwei oder mehr Elemente aus N zugeordnet werden dürfen. Dagegen kann mehreren (oder sogar allen) Elementen aus M dassebe Element aus N zugeordnet werden.

(1.2) BEISPIELE: a) Die Zuordnungsvorschrift einer Abbildung $f:M\longrightarrow N$ kann durch eine Tabelle gegeben sein:

$$M = \{a,b,c,d\} \;\;,\;\; N = \{1,2,3,4,5\} \;\;,\;\; egin{array}{c|c} x & f(x) \\ \hline a & 1 \\ b & 3 \\ c & 4 \\ d & 3 \end{array}$$

Zur Veranschaulichung zeichnen wir die Mengen M und N als Punktmengen in der Ebene und geben die Zuordnungen durch Pfeile an:



- b) Die Zuordnungsvorschrift kann durch eine Formel gegeben sein:
- Die Abbildung $f:\mathbb{R} \to \mathbb{R}$ sei definiert durch $f(x)=x^2+1$ (für alle $x\in\mathbb{R}$).

Zur Veranschaulichung können wir das Bild (den Graphen) dieser Abbildung zeichnen.

- ${f c})$ Geometrie: Drehungen, Spiegelungen, Parallelverschiebungen der Ebene sind Beispiele für Abbildungen.
- d) Algebra: Gruppenhomomorphismen sind strukturverträgliche Abbildungen.

- e) Zahlentheorie: Zahlentheoretische Funktionen sind Abbildungen $\mathbb{N} \longrightarrow \mathbb{C}$.
- f) Graphentheorie: Graphenisomorphismen sind spezielle Abbildungen zwischen Graphen.
- g) Ist M eine nichtleere Menge, so heißt die Abbildung

 $\mathrm{id}_M: M \longrightarrow M$, $x \longmapsto x$, die identische Abbildung auf M.

(1.3) DEF: Zwei Abbildungen $f: M \longrightarrow N$ und $g: M' \longrightarrow N'$ heißen gleich (in Zeichen: f = g), wenn die drei folgenden Bedingungen erfüllt sind:

1)
$$M=M'$$
 2) $N=N'$ 3) $f(x)=g(x)$ für alle $x\in M$.

Achtung: Sind $f,g:M\longrightarrow N$ zwei Abbildungen mit demselben Definitionsbereich und demselben Wertebereich, so gilt: $f\neq g\iff$ es gibt ein $x_0\in M$ mit $f(x_0)\neq g(x_0)$.

(1.4) DEF: Sind $f:M\longrightarrow N$ und $g:N\longrightarrow P$ Abbildungen, so ist die Abbildung $g\circ f:M\longrightarrow P$ definiert durch

$$(g \circ f)(x) := g(f(x))$$
 (für alle $x \in M$)

 $g \circ f$ heißt die Hintereinanderausführung (oder Verkettung) von f und g.

Achtung: $g \circ f$ ist nur definiert, wenn der Wertebereich von f mit dem Definitionsbereich von g übereinstimmt. $g \circ f$ wird gebildet, indem zuerst f und dann g ausgeführt wird.

- b) Die Hintereinanderausführung einer Spiegelung mit sich selbst ist die Identität.
- c) Die Hintereinanderausführung einer Drehung um 50° und einer Drehung um 60° mit demselben Mittelpunkt P ist die Drehung um 110° um P.

d.h. es gilt das Assoziativgesetz für die Hintereinanderausführung von Abbildungen.

- b) Für Abbildungen $f,g:M\longrightarrow M$ gilt nicht notwendig $g\circ f=f\circ g$, d.h. das Kommutativgesetz gilt i.a. nicht für die die Hintereinanderausführung von Abbildungen.
- c) Ist $f: M \longrightarrow N$ eine Abbildung, so gilt $f \circ id_M = f$ und $id_N \circ f = f$.

(1.7) DEF: Eine Abbildung $f: M \longrightarrow N$ heißt **injektiv**, wenn <u>jedes</u> Element aus N <u>höchstens</u> ein Urbild unter f in M besitzt.

(1.8) SATZ: Kriterium für die Injektivität

Für eine Abbildung $f: M \longrightarrow N$ sind folgende Aussagen äquivalent:

- a) f ist injektiv
- b) Für alle $x, x' \in M$ mit $x \neq x'$ folgt $f(x) \neq f(x')$
- c) Für alle $x, x' \in M$ mit f(x) = f(x') folgt x = x'.

Achtung: Für eine Abbildung $f:M\longrightarrow N$ gilt automatisch für alle $x,x'\in M$ mit x=x' folgt f(x)=f(x'), da eine Abbildung durch eine eindeutige Zuordnungsvorschrift definiert ist.

- (1.9) SATZ: Für Abbildungen $f: M \longrightarrow N$ und $g: N \longrightarrow P$ gilt:
- a) Sind f und g injektiv, so ist auch $g \circ f$ injektiv.
- b) Ist $g \circ f$ injektiv, so ist auch f injektiv.
- c) Ist $g \circ f$ injektiv, so muß g nicht injektiv sein.
- (1.10) DEF: Eine Abbildung $f: M \longrightarrow N$ heißt surjektiv, wenn jedes Element aus N mindestens ein Urbild unter f in M besitzt.

(1.11) SATZ: Kriterium für die Surjektivität

Für eine Abbildung $f: M \longrightarrow N$ sind folgende Aussagen äquivalent:

- a) f ist surjektiv
- b) Zu jedem $y \in N$ gibt es mindestens ein $x \in M$ mit y = f(x) .
- (1.12) SATZ: Für Abbildungen $f:M\longrightarrow N$ und $g:N\longrightarrow P$ gilt:
- a) Sind f und g surjektiv, so ist auch $g \circ f$ surjektiv.
- b) Ist $g \circ f$ surjektiv, so ist auch g surjektiv.
- c) Ist $g \circ f$ surjektiv, so muß f nicht surjektiv sein.
- (1.13) DEF: Eine Abbildung $f: M \longrightarrow N$ heißt $\frac{\text{bijektiv}}{\text{ist.}}$, wenn sie injektiv $\frac{\text{und}}{\text{surjektiv}}$

(1.14) SATZ: Kriterium für die Bijektivität

Für eine Abbildung $f: M \longrightarrow N$ sind folgende Aussagen äquivalent:

- a) f ist bijektiv
- b) Jedes Element aus N besitzt unter f genau ein Urbild in M
- c) zu jedem $y \in N$ gibt es genau ein $x \in M$ mit y = f(x) .

(1.15) SATZ: Für Abbildungen $f: M \longrightarrow N$ und $g: N \longrightarrow P$ gilt:

- a) Sind f und g bijektiv, so ist auch $g \circ f$ bijektiv.
- b) Ist $g \circ f$ bijektiv, so ist f injektiv und g surjektiv.
- c) Ist $g \circ f$ bijektiv, so müssen f oder g nicht bijektiv sein.

(1.16) SATZ: $f: M \longrightarrow N$ sei eine bijektive Abbildung. Dann gilt:

a) Es gibt eine Abbildung $g:N\longrightarrow M$, die durch die Vorschrift

$$y \in N : g(y) = x \in M : \iff f(x) = y$$

definiert ist (d.h. g bildet ein Element $y \in N$ auf das eindeutig bestimmte Urbild von y unter f ab).

- b) $g \circ f = \mathrm{id}_M$ und $f \circ g = \mathrm{id}_N$
- c) Sind $h,k:N\longrightarrow M$ Abbildungen mit der Eigenschaft $h\circ f=\operatorname{id}_M$ und $f\circ k=\operatorname{id}_N$, so folgt h=k .

(1.17) FOLGERUNG: Für eine Abbildung $f:M\longrightarrow N$ sind folgende Aussagen äquivalent:

- a) f ist bijektiv
- b) Es gibt genau eine Abbildung $g:N\longrightarrow M$ mit der Eigenschaft $g\circ f=\operatorname{id}_M$ und $f\circ g=\operatorname{id}_N$.

Achtung: Nur eine bijektive Abbildung besitzt eine Umkehrabbildung.

- $\underline{\underline{(1.19) \; \mathrm{SATZ:}}}_{\mathrm{id}_{M}^{-1} = \mathrm{id}_{M}}$ a) Die identische Abbildung id $_{M}: M \longrightarrow M$ ist bijektiv, und es gilt
- b) Sind $f: M \longrightarrow N$ und $g: N \longrightarrow P$ bijektive Abbildungen, so ist auch die Hintereinanderausführung $g \circ f$ bijektiv, und es gilt

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
. Achte auf die Reihenfolge!

c) Ist die Abbildung $f:M\longrightarrow N$ bijektiv, so ist auch die Umkehrabbildung $f^{-1}:N\longrightarrow M$ bijektiv, und es gilt

$$(f^{-1})^{-1} = f.$$

(1.20) SATZ: Für eine Abbildung $f:M\longrightarrow N$ sind folgende Aussagen äquivalent:

- a) f ist injektiv
- b) Es gibt eine Abbildung $g:N\longrightarrow M$ mit der Eigenschaft $g\circ f=\operatorname{id}_M$.

(1.21) SATZ: Für eine Abbildung $f:M\longrightarrow N$ sind folgende Aussagen äquivalent:

- a) f ist surjektiv
- b) Es gibt eine Abbildung $h:N\longrightarrow M$ mit der Eigenschaft $f\circ h=\operatorname{id}_N$.