Lösung 36. Aufgabe

Vollständige Induktion nach $n := \operatorname{grad}(f) \ge 1$. Sei $Z := \operatorname{ZFK}_K(f)$.

- (IA) $\underline{n=1}$ In diesem Fall hat f genau eine Nullstelle in K, d.h. Z=K und $[Z:K]=1\leq 1!$
- (IV) Sei n > 1 beliebig und die Behauptung richtig für alle Körper K' und alle Polynome aus K'[T] vom Grade n 1.

Sei K ein beliebiger Körper, $f \in K[T]$ ein Polynom vom Grade n und $Z = \mathrm{ZFK}_K(f)$. Sei $\alpha \in Z$ eine Nullstelle von f. Diese spaltet einen Linearfaktor von f ab:

$$f = (T - \alpha) \cdot g \text{ mit } g \in K(\alpha)[T], \text{ grad}(g) = n - 1$$

Da f über Z in Linearfaktoren zerfällt, gilt dies auch für g:

$$f = (T - \alpha) \cdot (T - \alpha_2) \cdot \dots \cdot (T - \alpha_n) = (T - \alpha) \cdot g \implies g = (T - \alpha_2) \cdot \dots \cdot (T - \alpha_n).$$

Wegen $Z = K(\alpha, \alpha_2, ..., \alpha_n) = (K(\alpha))(\alpha_2, ..., \alpha_n)$ ist dann Z auch ein ZFK von g über $K(\alpha)$. Es gilt also

$$g \in K(\alpha)[T]$$
, grad $(g) = n - 1$, $Z = ZFK_{K(\alpha)}(g)$,

so daß nach (IV)

$$[Z:K(\alpha)] \le (n-1)!$$

folgt. Da das Minimalpolynom m_{α} von α über K das Polynom f teilt, gilt

$$[K(\alpha):K] = \operatorname{grad}(m_{\alpha}) \leq \operatorname{grad}(f) = n.$$

Der **Gradsatz** liefert nun für $Z \supseteq K(\alpha) \supseteq K$

$$[Z:K] = [Z:K(\alpha)] \cdot [K(\alpha):K] \le (n-1)! \cdot n = n!$$