Anmerkungen zum Untergruppenverband von (S_4, \circ)

Die Hochzahlen in Klammern geben jeweils die Anzahl des jeweiligen Untergruppentyps an.

Die rot eingezeichneten Untergruppen bilden den Untergruppenverband von (A_4, \circ) .

Zu den einzelnen Untergruppen:

Das neutrale Element ε erzeugt die einzige Untergruppe der Ordnung 1.

- 6 Transpositionen t_j erzeugen zykl. Untergruppen $\langle t_j \rangle$ der Ordnung 2.
- 3 Produkte disjunkter Transpositionen τ_i erzeugen zyklische Untergruppen $\langle \tau_i \rangle$ der Ordnung 2.
- 4 Dreierzyklen d_k erzeugen zyklische Untergruppen $\langle d_k \rangle$ der Ordnung 3 .
- $V = \{arepsilon, au_1, au_2, au_3\}$ ist eine Kleinsche Vierergruppe der Ordnung 4 .
- 3 Viererzyklen v_i erzeugen zyklische Untergruppen $\langle v_i \rangle$ der Ordnung 4.

Jeweils zwei Transpositionen erzeugen eine Kleinsche Vierergruppe K_i , die die Ordnung 4 hat.

Es gibt 4 Untergruppen \hat{S}_3 der Ordnung 6, die vom Typ S_3 sind.

Es gibt 3 Untergruppen \hat{D}_4 der Ordnung 8, die vom Typ Δ_4 sind.

 $oldsymbol{A_4}$ ist die einzige Untergruppe der Ordnung $oldsymbol{12}$.

 S_4 ist die einzige Untergruppe der Ordnung 24 .

Fazit: (S_4, \circ) hat insgesamt 30 Untergruppen. 10 davon sind auch Untergruppen von A_4 .