$\underline{\text{Die Gruppe }(C_6,\circ)}$

Diese Gruppe wird in Aufgabe 8 behandelt. Es ist

$$C_6 = \{d_0, d_1, d_2, d_3, d_4, d_5\}$$

die Menge aller Drehungen der Ebene um den Nullpunkt, deren Drehwinkel ein ganzzahliges Vielfaches von $\frac{\pi}{3}$ ist $(d_k$ hat den Drehwinkel $k \cdot \frac{\pi}{3}$).

 (C_6, \circ) ist eine abelsche Gruppe der Ordnung 6.

Gruppentafel von (C_6, \circ) :

Untergruppen von (C_6, \circ) :

Die folgende Liste enthält **alle** Untergruppen von (C_6, \circ) :

$$\langle d_0 \rangle = \{d_0\}$$

 $\langle d_1 \rangle = C_6 = \langle d_5 \rangle \quad (\Longrightarrow \quad (C_6, \circ) \text{ ist zyklisch})$
 $\langle d_2 \rangle = \{d_0, d_2, d_4\} = \langle d_4 \rangle$
 $\langle d_3 \rangle = \{d_0, d_3\}$

Fazit: (C_6, \circ) ist eine zyklische Gruppe der Ordnung 6, deren erzeugende Elemente d_1 oder d_5 sind. Zu jedem positiven Teiler t von 6 gibt es genau eine Untergruppe von (C_6, \circ) , die die Ordnung t hat. Außerdem ist jede Untergruppe von (C_6, \circ) wieder zyklisch.