GRUNDZÜGE DER ALGEBRA (WS 2005/06)

Abgabe: Do. 10.11.2005, bis 13.00 Uhr

Fach Nr. 3 (orangener Schrank bei D1.348)

Internet: http://math-www.uni-paderborn.de/~chris

Schreiben Sie bitte auf die erste Seite **gut** leserlich Namen, Vornamen, Matrikel-Nr. und Nr. Ihrer Übungsgruppe. Heften Sie bitte die Seiten zusammen!

Es können **Bonuspunkte** für die Übungsschein–Klausur erworben werden. Es ist nur Einzelabgabe erlaubt.

- **9. Aufgabe:** (G, \star) sei eine Gruppe und $a \in G$ ein beliebiges Element. Beweise: $\langle a \rangle = \langle \overline{a} \rangle$. (2)
- 10. Aufgabe: a) (G, \star) sei eine <u>abelsche</u> Gruppe und $E = \{x, y\} \subseteq G$. Beweise:

$$\langle E \rangle = \{ x^{(m)} \star y^{(n)} \mid m, n \in \mathbb{Z} \}$$

- b) Beweise, daß $E := \{(2,3), (1,2)\}$ ein EZS der Produktgruppe ($\mathbb{Z} \times \mathbb{Z}, \otimes$) der Gruppe ($\mathbb{Z}, +$) mit sich ist. (5)
- **c*)** Sei $F = \{(a, b), (c, d)\} \subseteq \mathbb{Z} \times \mathbb{Z}$. Finde eine notwendige und hinreichende Bedingung dafür, daß F ein EZS von $(\mathbb{Z} \times \mathbb{Z}, \otimes)$ ist, und beweise deine Behauptung. (3*)
- 11. Aufgabe: Sei $\mathbb{Q}_{>0}$ die Menge der positiven rationalen Zahlen.
- a) Beweise, daß ($\mathbb{Q}_{>0}$, ·) eine abelsche Gruppe ist.
- **b)** Untersuche, ob die Menge \mathbb{P} aller Primzahlen ein EZS von $(\mathbb{Q}_{>0},\cdot)$ ist.

Hinweis: Jede natürliche Zahl ≥ 2 läßt sich als Produkt von Primzahlen darstellen.

- c) Untersuche, ob $(\mathbb{Q}_{>0},\cdot)$ endlich erzeugbar ist.
- **12.** Aufgabe: (G, \star) sei eine Gruppe und $\emptyset \neq U \subseteq G$ eine <u>endliche</u> Teilmenge. Beweise, daß U genau dann eine Untergruppe von (G, \star) ist, wenn U abgeschlossen bzgl. \star ist. (3)

Ein schönes Beispiel (außer Konkurrenz): Die Verknüpfung \star auf der Menge $M = \{a, b, c, d, e, f\}$ sei durch die folgende Verknüpfungstafel definiert:

*	a	b	c	d	e	f
\overline{a}	a	b	c	d	e	f
b	$\begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix}$	c	a	e	f	d
c	c	a	b	f	d	e
d	d	e	f	c	b	a
e	e	f	d	b	a	c
f	f	d	e	a	c	b

Aus dieser Tafel liest man ab:

⋆ ist kommutativ

Es gibt ein neutrales Element

Jedes Element aus M ist invertierbar

In jeder Zeile und Spalte kommt

jedes Element von M genau einmal vor **Aber:** (M, \star) ist **keine** Gruppe! (Wieso?)

(6)