§ 21. Trigonalisierbare Endomorphismen und Matrizen

Wir wollen untersuchen, wann es für einen Endomorphismus $f: V \longrightarrow V$ eine Basis B von V gibt, so daß $\mathcal{M}_B^B(f)$ eine obere Dreiecksmatrix ist.

- (21.1) **DEF:** a) Sei V ein endlichdimensionaler K-Vektorraum. Ein K-Endomorphismus $f: V \longrightarrow V$ heißt **trigonalisierbar**, wenn es eine Basis B von V gibt, so daß die Darstellungsmatrix $\mathcal{M}_B^B(f)$ eine eine obere Dreiecksmatrix ist.
- b) Eine Matrix $M \in M_n(K)$ heißt trigonalisierbar, wenn M zu einer oberen Dreiecksmatrix ähnlich ist.
- (21.2) **DEF:** V sei ein n-dimensionaler K-Vektorraum.
- a) Eine Folge $(U_i)_{i=0,1,\ldots,n}$ von Unterktorräumen U_i von V heißt eine Fahne von V, wenn gilt:
- i) $\dim_K(U_i) = i$ für alle $i = 0, 1, \ldots, n$
- ii) $U_0 \subset U_1 \subset U_2 \subset \ldots \subset U_{n-1} \subset U_n = V$
- **b)** Sei $f \in \operatorname{End}_K(V)$.

Ein Untervektorraum $U \subseteq V$ heißt f-invariant, wenn gilt: $f(U) \subseteq U$.

Eine Fahne $(U_i)_{i=0,1,\dots,n}$ von V heißt f-invariant, wenn jeder Untervektorraum U_i f-invariant ist.

- (21.3) SATZ: Sei V ein endlichdimensionaler K-Vektorraum. Für einen K-Endomorphismus $f: V \longrightarrow V$ sind folgende Aussagen äquivalent:
- a) f ist trigonalisierbar
- **b)** Es existiert eine f-invariante Fahne von V.
- (21.4) BEM: a) $M \in M_n(K)$ trigonalisierbar $\iff f_M : K^n \longrightarrow K^n$ trigonalisierbar.
- b) Das charakteristische Polynom einer oberen Dreiecksmatrix $M=(a_{ik})\in \mathrm{M}_n(K)$ ist $p_M=\prod_{i=1}^n(a_{ii}-T)$. Damit zerfällt p_M in Linearfaktoren, und die Haupdiagonalelemente a_{ii} $(i=1,\ldots,n)$ sind gerade die Eigenwerte von M. Ist die Matrix M ähnlich zu einer oberen Dreiecksmatrix, so zerfällt p_M ebenfalls in Linearfaktoren (20.17b), da ähnliche Matrizen dasselbe charakteristische Polynom haben..
- (21.5) SATZ: a) Sei V ein endlichdimensionaler K-Vektorraum und $f: V \longrightarrow V$ ein KEndomorphismus. Dann gilt: f ist trigonalisierbar \iff das charakteristische Polynom p_f von f zerfällt in K[T] in Linearfaktoren.
- b) Für eine Matrix $M \in M_n(K)$ gilt: M ist trigonalisierbar \iff das charakteristische Polynom p_M von M zerfällt in K[T] in Linearfaktoren.

Bew: a) Der Beweis läßt sich auf b) zurückführen.

b) "⇒ " Gilt nach (21.4b)

"\(\infty \)" Wir führen vollständige Induktion nach $n \in \mathbb{N}$:

 $\underline{n=1}$ $M \in M_1(K)$ ist schon eine obere Dreiecksmatrix.

 $\underline{n=2}$ Sei $M\in \mathrm{M}_2(K)$. Da p_M in Linearfaktoren zerfällt, gibt es einen Eigenwert $\lambda_1\in K$ von M. Sei v_1 ein Eigenvektor von M zum Eigenwert λ_1 . Ergänze $\{v_1\}$ zu einer Basis $\{v_1,v_2\}$ von K^2 . Sei $P:=(v_1\ v_2)\in \mathrm{M}_2(K)$ die Matrix mit den Spalten v_1,v_2 . Dann folgt $P\in \mathrm{GL}_2(K)$ und $P^{-1}\cdot M\cdot P=\begin{pmatrix}\lambda_1&\star\\0&\star\end{pmatrix}$, d.h. M ist ähnlich zu einer oberen Dreiecksmatrix. Damit ist M trigonalisierbar.

(IV) Sei $n \in \mathbb{N}, n > 1$ beliebig aber fest, und es sei jede Matrix aus $M_{n-1}(K)$, deren charakteristisches Polynom in Linearfaktoren zerfällt, trigonalisierbar.

(IS) Sei $M \in M_n(K)$ eine beliebige Matrix, deren charakteristisches Polynom in Linearfaktoren zerfällt. Zu zeigen ist, daß M zu einer oberen Dreiecksmatrix ähnlich ist.

Nach Voraussetzung über p_M existiert mindestens ein Eigenwert $\lambda_1 \in K$ von M. Sei $v_1 \in K^n$ ein zugehöriger Eigenvektor. Ergänze $\{v_1\}$ zu einer Basis $\{v_1, v_2, \ldots, v_n\}$ von K^n (dies kann auf ganz unterschiedliche Weise geschehen!). Sei P die Matrix mit den Spalten v_1, v_2, \ldots, v_n . Dann gilt $P \in GL_n(K)$ und

$$P^{-1} \cdot M \cdot P = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & & & \\ \vdots & & N & \\ 0 & & & \end{pmatrix}$$

mit einer Matrix $N \in \mathcal{M}_{n-1}(K)$. Wegen $p_M = (\lambda_1 - T) \cdot p_N$ zerfällt auch p_N in Linearfaktoren, so daß es nach (IV) eine Matrix $Q \in GL_{n-1}(K)$ gibt, für die

$$Q^{-1} \cdot N \cdot Q = \begin{pmatrix} \lambda_2 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

eine obere Dreiecksmatrix ist. Setze

$$R := \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & Q & \\ 0 & & & \end{pmatrix} \in \mathcal{M}_n(K)$$

Wegen $det(R) = det(Q) \neq 0$ ist R invertierbar, und es gilt

$$R^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & Q^{-1} & \\ 0 & & & \end{pmatrix} \in \mathcal{M}_n(K)$$

Man rechnet nun nach, daß:

$$R^{-1}P^{-1}MPR = R^{-1} \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & & & \\ \vdots & & N & \\ 0 & & & \end{pmatrix} R = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & & & \\ \vdots & & Q^{-1}NQ & \\ 0 & & & \end{pmatrix} = \begin{pmatrix} \lambda_1 & & & * \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix}$$

eine obere Dreiecksmatrix ist. Mit $S := P \cdot R \in GL_n(K)$ ist dann $S^{-1}MS$ eine obere Dreiecksmatrix, d.h. die Matrix M ist trigonalisierbar.

(21.6) FOLG: a) Ist V ein endlichdimensionaler \mathbb{C} -Vektorraum, so ist jeder \mathbb{C} -Endomorphismus f von V trigonalisierbar.

b) Jede Matrix aus $M_n(\mathbb{C})$ ist ähnlich zu einer oberen Dreiecksmatrix.

<u>Bew:</u> Nach dem Fundamentalsatz (D.6) zerfällt jedes nichtkonstante Polynom aus $\mathbb{C}[T]$ in Linearfaktoren.

(21.7) BEISPIEL: Wir wollen die Überlegungen, die zum Beweis von (21.5b) angestellt wurden, in einem konkreten Fall nachvollziehen. Sei

$$M := \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & 1 \\ -1 & -1 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Man berechnet: $p_M = \det(M - TE_3) = -T^3 + 4T^2 - 5T + 2 = (2 - T)(T - 1)^2$. Damit zerfällt das charakteristische Polynom von M in Linearfaktoren über \mathbb{R} , so daß M nach (21.5b) **trigonalisierbar** ist. Die Eigenwerte von M sind die Nullstellen von p_M , hier also 2 und 1 mit der Vielfachheit $\mu(p_M, 2) = 1$ bzw. $\mu(p_M, 1) = 2$.

Wir wollen jetzt eine Matrix $S \in GL_3(\mathbb{R})$ bestimmen mit

$$S^{-1} \cdot M \cdot S = \text{obere Dreiecksmatrix}$$

Es ist $v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ ein Eigenvektor von M zum Eigenwert 2 (es gilt $Mv_1 = 2v_1$).

(*) Ergänze $\{v_1\}$ zu einer Basis $B=\{v_1,v_2,v_3\}$ von \mathbb{R}^3 (hier gibt es viele Wahlmöglichkeiten!)

Wir wählen
$$v_2 := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 und $v_3 := \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. Dann ist $\{v_1, v_2, v_3\}$ eine Basis von \mathbb{R}^3 (dies

kann man etwa mit einer Determinante begründen). Sei P die Matrix mit den Spalten v_1, v_2, v_3 (natürlich $P \in GL_3(\mathbb{R})$)

$$P := \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \quad \text{und} \quad P^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & 1 \\ \frac{1}{2} & -\frac{1}{2} & -1 \end{pmatrix}$$

Es gilt nun:

$$P^{-1} \cdot M \cdot P = \begin{pmatrix} 2 & -1 & -1 \\ 0 & | & -1 & -4 \\ & | & N & \\ 0 & | & 1 & 3 \end{pmatrix} \quad \text{mit der Matrix } N := \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}),$$

die trigonalisierbar ist (dies entspricht der Induktionsvoraussetzung in dem Beweis von (21.5b)).

Für die Matrix $Q := \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$ gilt nämlich $Q \in GL_2(\mathbb{R})$ und

$$Q^{-1} \cdot N \cdot Q = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 (obere Dreiecksmatrix)

Bilde nun die Matrix

$$R := \begin{pmatrix} 1 & 0 & & 0 \\ 0 & & & \\ & & Q & \\ 0 & & & \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Dann gilt $R \in GL_3(\mathbb{R})$, da $det(R) \neq 0$, und mit $S := P \cdot R \in GL_3(\mathbb{R})$ ergibt sich

$$S^{-1} \cdot M \cdot S = (PR)^{-1}M(PR) = R^{-1}P^{-1}MPR = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Also ist $S^{-1} \cdot M \cdot S$ eine obere Dreiecksmatrix.

An der Stelle (*) gab es Wahlmöglichkeiten. Wir geben dafür noch zwei weitere Beispiele:

2. Möglichkeit:
$$v_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, $v_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Mit der Matrix $P := \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in GL_3(\mathbb{R})$ ist dann
$$P^{-1}MP = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

schon gleich eine obere Dreiecksmatrix, die übrigen Schritte sind hier nicht mehr erforderlich.

3. Möglichkeit:
$$v_2 := \begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix}, v_3 := \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
. Mit der Matrix $P := \begin{pmatrix} 1 & -2 & 0 \\ -1 & 0 & 1 \\ 1 & -2 & -1 \end{pmatrix} \in \operatorname{GL}_3(\mathbb{R})$ ist dann
$$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$$

$$P^{-1}MP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

schon gleich eine obere Dreiecksmatrix, die übrigen Schritte sind hier wieder nicht mehr erforderlich. In diesem letzten Beispiel haben wir sogar die sog. **Jordan'sche Normalform** von M gefunden, die wir später noch behandeln werden.