Bew: 1) Eindeutigkeit

Seien $f, g: V \longrightarrow W$ zwei K-lineare Abbildungen mit $f(v_i) = w_i$ und $g(v_i) = w_i$ für alle i = 1, 2, ..., n. Dann folgt $f(v_i) = g(v_i) \ \forall i \in \{1, 2, ..., n\}$. Da B als Basis von V insbesondere auch ein EZS von V ist, ergibt sich f = g mit (17.32). Also gibt es höchstens eine lineare Abbildung mit der gewünschten Eigenschaft.

2) Existenz

Wir müssen den Bildwert $f(v) \in W$ für ein beliebiges $v \in V$ in eindeutiger Weise festlegen. Da B eine Basis von V ist, besitzt **jeder** Vektor $v \in V$ eine Darstellung der Form

$$v = \sum_{i=1}^n a_i v_i$$

mit eindeutig bestimmten Koeffizienten $a_i \in K$. Definiere in diesem Fall:

$$f(v):=\sum_{i=1}^n a_i w_i$$

Dann ist f(v) ein Vektor aus W, der durch v eindeutig bestimmt ist. Durch $v \longmapsto f(v)$ ist damit eine eindeutige Zuordnungsvorschrift erklärt, die eine **Abbildung** $f: V \longrightarrow W$ definiert.

Es wird nun gezeigt, daß f K-linear ist.

$$\mathbf{L}_1$$
) Seien $v = \sum_{i=1}^n a_i v_i$, $v' = \sum_{i=1}^n a_i' v_i$ zwei beliebige Vektoren aus V .

Dann ist $v+v'=\sum_{i=1}^n(a_i+a_i')v_i$. Damit folgt:

$$\underline{\underline{f(v+v')}} \stackrel{(*)}{=} \sum_{i=1}^{n} (a_i + a_i') w_i = \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} a_i' w_i \stackrel{(*)}{=} \underline{\underline{f(v) + f(v')}}$$

L₂) Seien
$$v = \sum_{i=1}^{n} a_i v_i \in V$$
 und $r \in K$ beliebig. Dann ist $rv = \sum_{i=1}^{n} (ra_i)v_i$, und es folgt $\underline{\underline{f(rv)}} \stackrel{(*)}{=} \sum_{i=1}^{n} (ra_i)w_i = r\left(\sum_{i=1}^{n} a_i w_i\right) \stackrel{(*)}{=} \underline{\underline{rf(v)}}$

Als letztes bleibt zu zeigen, daß $f(v_i) = w_i$ für alle $i = 1, 2, \ldots, n$ gilt.

Es ist
$$v_i=0v_1+\ldots+0v_{i-1}+1v_i+0v_{i+1}+\ldots+0v_n$$
. Nach Definition von f folgt $f(v_i)=0w_1+\ldots+0w_{i-1}+1w_i+0w_{i+1}+\ldots+0w_n=w_i$

Damit ist alles bewiesen.

<u>BEM:</u> Die Aussage des Satzes (17.33) gilt auch für den Fall, daß V ein unendlichdimensionaler Vektorraum ist.

(17.34) SATZ: Für zwei endlichdimensionale K-Vektorräume V und W gilt:

$$V \cong W \iff \dim_K(V) = \dim_K(W)$$

(17.35) FOLG: Ist V ein K-Vektorraum der Dimension n, so folgt

$$V \cong K^n$$

(17.36) DEF: Für eine beliebige K-lineare Abbildung $f:V\longrightarrow W$ wird

$$\operatorname{rg}_K(f) := \dim_K(\operatorname{Bild}(f))$$

der K-Rang von f genannt.

(17.37) BEM: Sei $f: V \longrightarrow W$ eine K-lineare Abbildung.

- a) $\dim_K(W) < \infty \implies \operatorname{rg}_K(f) < \infty$
- b) Ist $E \subseteq V$ ein endliches EZS von V, so ist f(E) ein endliches EZS von Bild(f). Also ist $\operatorname{rg}_K(f)$ die Maximalzahl linear unabhängiger Vektoren aus f(E). Folglich:

$$\dim_K(V)<\infty \ \implies \ \operatorname{rg}_K(f)<\infty$$

- c) Im Falle $\dim_K(W) < \infty$ gilt: f surjektiv \iff $\operatorname{rg}_K(f) = \dim_K(W)$
- d) f injektiv \iff $\dim_K(\operatorname{Kern}(f)) = 0$

(17.38) Beispiele: a) Für $f:V\longrightarrow W$ gilt: $\operatorname{rg}_K(f)=0\iff f=o$

- b) $\operatorname{rg}_{K}(\operatorname{id}_{V}) = \dim_{K}(V)$, falls V endlichdimensional ist.
- c) Sei $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_{3,4}(\mathrm{I\!R})$. Für die $\mathrm{I\!R}$ -lineare Abbildung $f_A: \mathrm{I\!R}^4 \longrightarrow \mathrm{I\!R}^3$ gilt

dann
$$f_A(B)=\left\{\left(egin{array}{c}1\\0\\0\end{array}
ight),\left(egin{array}{c}0\\1\\0\end{array}
ight),\left(egin{array}{c}0\\0\\0\end{array}
ight)
ight\}$$
, wobei $B=\{e_1,e_2,e_3,e_4\}$ die kanonische Basis

von ${\rm I\!R}^4$ ist. Mit (17.37b) ergibt sich ${\rm rg}_{\rm I\!R}(f_A)=2$. Es ist aber auch ${\rm rg}(A)=2$, da A=T(A).

Frage: Ist diese Übereinstimmung Zufall?

(17.39) LEMMA: V, W, X, Y seien endlichdimensionale K-Vektorräume, und es seien

 $f:V\longrightarrow W,g:W\longrightarrow X$, $h:X\longrightarrow Y$ K-lineare Abbildungen. Dann gilt:

- a) f surjektiv $\Longrightarrow \operatorname{rg}_K(g \circ f) = \operatorname{rg}_K(g)$
- b) h injektiv $\Longrightarrow \operatorname{rg}_K(h \circ g) = \operatorname{rg}_K(g)$
- c) f surjektiv und h injektiv $\Longrightarrow \operatorname{rg}_K(h \circ g \circ f) = \operatorname{rg}_K(g)$.

Bew: Übungsaufgabe 28.

(17.40) LEMMA: Sei $f: V \longrightarrow W$ eine K-lineare Abbildung. Ist V endlichdimensional, so gibt es einen Untervektorraum $U \subseteq V$ mit folgenden Eigenschaften:

i)
$$V = \operatorname{Kern}(f) \oplus U$$
 ii) $U \cong \operatorname{Bild}(f)$

ii)
$$U \cong Bild(f)$$

(17.41) RANGSATZ für lineare Abbildungen

V und W seien K-Vektorräume, und $f:V\longrightarrow W$ sei eine K-lineare Abbildung. Ist dann V endlichdimensional, so gilt:

- a) $\operatorname{rg}_{K}(f) < \infty$
- b) $\dim_K(V) = \dim_K(\operatorname{Kern}(f)) + \operatorname{rg}_K(f)$.

(17.42) FOLG: V und W seien endlichdimensionale K-Vektorräume mit $\dim_K(V)=$ $\overline{\dim_K(W)}$. Für eine K-lineare Abbildung $f:V\longrightarrow W$ sind dann folgende Aussagen äquivalent:

- a) f ist injektiv
- b) f ist surjektiv
- \mathbf{c}) \mathbf{f} ist bijektiv.

(17.43) BEM: a) Ein entsprechendes Ergebnis gilt für eine Abbildung $f: M \longrightarrow N$ zwischen zwei endlichen Mengen mit gleicher Elementzahl:

Im Falle |M| = |N| sind folgende Aussagen äquivalent:

- a) f ist injektiv
- b) f ist surjektiv
- \mathbf{c}) \mathbf{f} ist bijektiv.
- b) Sind V und W unendlichdimensionale K-Vektorräume, so gilt (17.42) i.a. nicht mehr! (s. Aufgabe 25)