§ 3 Mengen

(3.1) DEF: Menge (Georg Cantor, 1845–1918)

Unter einer **Menge** verstehen wir jede Zusammenfassung von Objekten unserer Anschauung oder unseres Denkens zu einer Gesamtheit. Die Objekte heißen **Elemente** der Menge.

Aus dieser Definition ergibt sich:

- ullet Ist M eine Menge und x ein Objekt, so gehört x entweder zu M oder nicht
- Die Elemente einer Menge sind alle voneinander verschieden
- Eine Menge selbst ist wieder als ein Objekt unserer Anschauung oder unseres Denkens anzusehen
- Zwei Mengen sind gleich, wenn sie dieselben Elemente enthalten.

Bezeichnung Ist M eine Menge und x ein Objekt, so bedeute $\underline{x} \in \underline{M}$, daß x ein Element von M ist, und $x \notin M$ bedeute, daß x nicht Element von M ist. Zur Bezeichnung einer Menge werden geschweifte Klammern benutzt, die um die Elemente gesetzt werden.

Festlegung einer Menge

Wir können eine Menge dadurch festlegen, daß wir ihre Elemente aufzählen (meistens bei endlichen Mengen) oder eine Eigenschaft angeben, die genau von ihren Elementen erfüllt sein soll.

- ullet aufzählend: $M:=\{1,2,3,4\}$ ist die Menge der ganzen Zahlen von 1 bis 4
- beschreibend: $N := \{x \mid x \text{ erfüllt die Eigenschaft } E\}$ Häufig wird ein Bereich B angegeben, aus dem x stammen soll $N := \{x \mid x \in B, x \text{ erfüllt die Eigenschaft } E\}$ Beispiel: $G := \{x \mid x \in \mathbb{Z}, x \text{ ist eine gerade Zahl}\}$ ist die Menge aller geraden ganzen Zahlen.

Standard-Mengen

- \mathbb{N} Menge der natürlichen Zahlen $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$
- \mathbb{Z} Menge der ganzen Zahlen $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,4,\ldots\}$
- \mathbb{Q} Menge der rationalen Zahlen $\mathbb{Q} = \{ r \, | \, r = \frac{a}{b}, \, a, b \in \mathbb{Z}, b \neq 0 \}$
- R Menge der reellen Zahlen
- Ø die Menge, die kein Element enthält (leere Menge)
- (3.2) DEF: Zwei Mengen M und N heißen gleich (in Zeichen M = N), wenn sie dieselben Elemente enthalten, d.h. wenn jedes Element von M auch Element von N ist und umgekehrt.

28.10.2004

(3.3) **DEF:** Eine Menge M heißt **Teilmenge** einer Menge N (in Zeichen: $M \subseteq N$), wenn jedes Element von M auch Element von N ist.

M heißt echte Teilmenge von N (in Zeichen: $M \subset N$), wenn $M \subseteq N$ und $M \neq N$ gelten.

 $M \not\subseteq N$ bedeutet, daß M keine Teilmenge von N ist.

- (3.4) BEM: a) Für jede beliebige Menge M gilt: $\emptyset \subseteq M$
- b) Für je zwei Mengen M und N gilt: $(M = N) \iff M \subseteq N$ und $N \subseteq M$.
- (3.5) DEF: Mengenoperationen

 \boldsymbol{M} und \boldsymbol{N} seien beliebige Mengen.

a) Die Vereinigungsmenge von M und N ist definiert durch

$$M \cup N := \{ x \mid x \in M \lor x \in N \}$$

b) Die Durchschnittsmenge von M und N ist definiert durch

$$M \cap N := \{ x \mid x \in M \land x \in N \}$$

c) Die Differenzsmenge von M und N ist definiert durch

$$M \setminus N := \{ x \mid x \in M \land x \not\in N \}$$

d) Im Falle $U\subseteq M$ heißt $C_M(U):=M\setminus U$ die Komplementmenge von U bzgl. M .

(3.6) SATZ: Mengenalgebra

M, N und P seien beliebige Mengen. Dann gelten die folgenden Regeln:

a)
$$M \subset M \cup N$$
, $N \subset M \cup N$, $M \cap N \subset M$, $M \cap N \subset N$

b)
$$M \cup N = N \cup M$$
 , $M \cap N = N \cap M$

c)
$$(M \cup N) \cup P = M \cup (N \cup P)$$
, $(M \cap N) \cap P = M \cap (N \cap P)$

d)
$$M \cup (N \cap P) = (M \cup N) \cap (M \cup P)$$

 $M \cap (N \cup P) = (M \cap N) \cup (M \cap P)$

e)
$$M \cup \emptyset = M$$
 , $M \cap \emptyset = \emptyset$

f)
$$M \setminus \emptyset = M$$
 , $\emptyset \setminus M = \emptyset$

g)
$$M \setminus (N \cup P) = (M \setminus N) \cap (M \setminus P)$$

 $M \setminus (N \cap P) = (M \setminus N) \cup (M \setminus P).$

Die Beweise werden in erster Linie mit Hilfe der logischen Formeln aus (2.3) und (2.4) geführt (s.S.11).

(3.7) **DEF:** Die **Potenzmenge** einer Menge M ist die Menge aller Teilmengen von M. Sie wird mit $\mathcal{P}(M)$ bezeichnet.

(3.8) BEM: Es gilt immer: $\emptyset \in \mathcal{P}(M)$ und $M \in \mathcal{P}(M)$

(3.9) **DEF:** M und N seien Mengen.

a) Ein geordnetes Paar aus einem Element $x \in M$ und einem Element $y \in N$ wird mit (x, y) bezeichnet. Man nennt x die erste und y die zweite Komponente von (x, y). Die Gleichheit zweier geordneter Paare (x, y) und (x', y') ist definiert durch

$$(x,y) = (x',y') : \iff x = x' \land y = y'$$

b) Die Menge $M \times N := \{ (x,y) \mid x \in M \land y \in N \}$ aller geordneten Paare, deren erste Komponente in M und deren zweite Komponente in N liegen, heißt das kartesische **Produkt** von M und N. Im Falle M = N schreibt man auch $M \times M = : M^2$.

(Nach René Descartes (Cartesius),1596–1650)

(3.10) BEM: Es gilt:
$$M \times N = \emptyset \iff (M = \emptyset \vee N = \emptyset)$$

Zum Beweis von Satz (3.6)

Jede Mengen-Formel auf linken Seite basiert auf der logischen Formel auf der rechten Seite.

	Ergebnisse	logische Hilfsmittel	
	M,N,P seien Mengen	A,B,C seien Aussagen	
a)	$M\subseteq M\cup N$	$A \Longrightarrow A \vee B$	
b)	$M \cup N = N \cup M$	$A \lor B \Longleftrightarrow B \lor A$	Komm.G.
c)	$(M \cup N) \cup P = M \cup (N \cup P)$	$(A \vee B) \vee C \Longleftrightarrow A \vee (B \vee C)$	Ass.G.
d)	$M \cup (N \cap P) = (M \cup N) \cap (M \cup P)$	$A \lor (B \land C) \Longleftrightarrow (A \lor B) \land (A \lor C)$	Distr.G.
e)	$M \cup \emptyset = M$	$A \lor F \Longleftrightarrow A$	
f)	$M\setminus\emptyset=M$	$A \wedge W \Longleftrightarrow A$	
g)	$M\setminus (N\cup P)=(M\setminus N)\cap (M\setminus P)$	$\neg (A \lor B) \Longleftrightarrow (\neg A \land \neg B)$	de Morgan

	Ergebnisse	logische Hilfsmittel	
	M,N,P seien Mengen	A,B,C seien Aussagen	
a)	$M\cap N\subseteq M$	$A \wedge B \Longrightarrow A$	
b)	$M\cap N=N\cap M$	$A \wedge B \Longleftrightarrow B \wedge A$	Komm.G.
c)	$(M\cap N)\cap P=M\cap (N\cap P)$	$(A \wedge B) \wedge C \Longleftrightarrow A \wedge (B \wedge C)$	Ass.G.
d)	$M\cap (N\cup P)=(M\cap N)\cup (M\cap P)$	$A \wedge (B \vee C) \Longleftrightarrow (A \wedge B) \vee (A \wedge C)$	Distr.G.
e)	$M\cap\emptyset=\emptyset$	$A \wedge F \Longleftrightarrow F$	
f)	$\emptyset \setminus M = \emptyset$	$F \wedge A \Longleftrightarrow F$	
g)	$M\setminus (N\cap P)=(M\setminus N)\cup (M\setminus P)$	$\neg (A \land B) \Longleftrightarrow (\neg A \lor \neg B)$	de Morgan